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An important place is occupied in plasma theory by the two-fluid magnetohydrodynamic 
model [1-3]. Such a model is particularly useful in studying the motions of a plasma in 
crossed E x H fields. For this particular case there exists a sufficiently reliable basis 
for the applications of hydrodynamic equations and a number of solutions have been derived 
for nonlinear wave motions. The majority of the solutions for the nonlinear equations of 
two-fluid magnetohydrodynamics is based on the utilization of such simplifying assumptions 
as the properties of quasineutrality (n e = n i) and the "freezing-in" concept (ne/B = const), 
whose validity, as a rule, is not analyzed. A sufficient criterion for the validity of 
approximating quasineutrality is satisfaction of the inequality ~ << 1 (p = WBe/mPe, where 

~Be = lelB0/me c is the electron cyclotron frequency, while ~Pe = ~4~ eyn~/me is the Langmuir 

frequency). In the opposite limit case (~ >> i) we make use of the "frozen-in" condition. 

By turning to the properties of quasineutrality, i.e., the concept of being "frozen 
in," makes it possible to lower the order of magnitude of the system of differential equations. 
In this event, the terms with small parameters for the higher derivatives are necessarily 
excluded. From the mathematical standpoint, any attempt to take into consideration these 
excluded terms signifies the introduction of singular perturbations, to which our attention 
was first drawn in [4, 5]. It was demonstrated in [6-10] that quasilinearity cannot be 
regarded as a universal property of a plasma when U << I: the field of charge separation 
may lose stability and oscillations may develop within the plasma, the amplitudes of these 
oscillations corresponding virtually to the complete separation of the charges on scales 
considerably smaller than that of the external perturbations. The developing steady oscilla- 
tions may significantly affect the nature of the change in the slow variables describing 
the plasma [4, 6, 8]. Thus, a detailed analysis of the equation for variables with the 
least scale change must precede both the analytical and numerical solution of the hydrodyna- 
mic equations of the plasma. 

In the present study we utilized the method from the theory of singular perturbations 
of the systems to analyze the properties of frozen-in electrons (ne/B = const) for a plasma 
in which ~ >> i. It is our primary goal to propose a mathematical apparatus which would 
make it possible to derive steady-state solutions for the case in which the frozen-in condi- 
tion need not be satisfied, whereas the density and velocity of the electrons in a direction 
perpendicular to the magnetic field and to the direction of wave propagation execute oscilla- 
tions at a frequency on the order o~ the electron cyclotron frequency. 

Let us examine a straight magnetosonic wave of finite amplitude. We will describe 
this wave within the framework of the equations of two-fluid collision-free magnetchydro- 
dynamics, with a condition of applicability for these'equations being the satisfaction of 
the relationship ~ >> p (~ is the characteristic scale of the spatial change in the hydrodya- 
~mic quantities, with p representing the Larmor electron radius) [ii]. We will use a coordi- 
nate system whose 0z axis is directed along the magnetic field B. We assume that all of 
the quantities depend exclusively on the coordinate x, and that the magnetosonic wave is 
propagated along the 0x axis. A wave-type solution is sought in its dependence on the vari- 
able ~ = x - ut. The system of Maxwell equations in conjunction with the equations of motion 
and continuity for electrons and ions is then written as follows: 

E y  =- ( z d c ) ( B  - -  Bo); <l) 
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d E j d ~  ----- 4~ tel(ni - -  ne); ( 2 ) 

--'~2dBld,~ = 4r~ lel(n~v~u - -  n~v~g)/c; (3)  
m~,inoudv~,Jd~ = dp~,Jd~ m leln~,i(E~ .+ v~,i.~Blc); ( 4 )  

m~,~noudv~,iu/d~ = • [eln~,i(E u - -  v~,~.~B[c); . ( 5 )  

n~,~ = nou/(u - v~,~.~) (6) 

[no and B0 are the unperturbed values of particle density and the magnetic field, ~ = 
Jl --(u/c)2]. It is assumed in (1)-(6) that in the unperturbed state as ~ + +~ there are 
no hydrodynamic motions: v e,i(+ ~) = 0. Nevertheless, no consideration is given to devia- 
tions from equilibrium as ~ + +=, resulting from the thermal noise of the intrinsic plasma 
oscillations. As in [ii, 12], in Eqs. (i)-(6) we neglect the phenomena associated with 
the finiteness of the Larmor radius of the charged particle s (magnetic viscosity), since 

>> p, as well as collisional friction. Applying' to system (1)-(6) the procedure described 
in [8], for the case of ~ >> I we reduce it to the following: 

(MV"~/p)dY/d~  = F ( X ,  Y ,  b, Z)/Q(X,  Y ,  b, Z); 

(Mg'~ lp)dZ]d~ : b - -  ~; 

U ] / ~ t d X / d ~  : Y ;  

(v~/M V"~)db /d~  = Z('~ + en) - -  X n e p  2, 

(7) 

(8) 

(~) 

(lO) 

where $ = ~mpe2/C~Be, X = Ex/MC~s~B0, b = B/B0, n = ni/n0, n = ne/n 0 (n = n - Y), M = u/v A 

(VA2 = B02/40n0mi ), e = me/mi, Q(X, Y, b, Z) = I - ~n2, $ = Te/meU2 F(X, Y, b, Z) = 

--X[~3 + eQ(X, Y, b, Z)n3(l +beD=)] - bZ[n 3 - E2Q(X, Y, b, Z)n3]. In this case, system~ 
(7)-(10) is enhanced with the following algebraic equation to link the variables n and n 
[8]: 

e( i  - -  ihz)  + I - -  l / n  = (~ - -  l ) s p  or [~2(b~ - -  i )  - -  M:e~X2I /2M~.  ( 1 1 )  

A s i n g l e  a s s u m p t i o n  w a s  m a d e  i n  t h e  d e r i v a t i o n  o f  ( 7 ) - ( 1 1 ) :  T i = 0 ,  T e = c o n s t ,  a n d  i n  
view of the limitations imposed on system (i)-(6) we will subsequently assume that ~ << i. 

The solution of system (7)-(11) is sought for ~ ~-~ under additional conditions. For 
the variables b and X we have the boundary conditions in the region $ § +~, which has not 
yet been reached by the magnetosonic wave: b(+=) = !, X(+~) = O. As regards the variables 
Z and Y, out of physical considerations we require as g + +~ only the proximity of the quan- 
tities Z(+~) and Y(+~) to their equilibrium values: Zequ = 0 and neq u = beq u = i. A more 
precise definition of these quantities is not possible. In the algebraic expression (ii), 
which can be treated as the equation for ion density, transition to the unperturbed state 
n(+~) = 1 on consideration that ~ << i and g << I, corresponds to the root n = 2M2/[2M 2 + 
7=(i -- b e) + M2eD2X2]. Let us limit ourselves to a case of ways not overly powerful, for 
which the Alfven-Mach number M ~ 2.76 [3] and the phenomena of "raking" or "reflection" 
of the ions do not occur. In this case, the totality of equations (7)-(11) with the addi- 
tional conditions as ~ + +~ relates to the class of singularly perturbed systems [13, 14], 
since in system (7)-(10) the derivatives have the small parameters M~eTD << M~r~ < i (we 
note that ~ >> i, but in view of u/c < i, Mv]~ < I). 

In general outlines system (7)-(11) coincides with the corresponding equations from 
[4, i0], derived for ~ << i. Unlike [4, i0] when ~ >> i, proceeding from the requirement 
of representativeness for system (7)-(10) (the possibility of expressing the fast variables 
in terms of the slow when the small parameter formally tends to zero [13, 14]), it is essen- 
tial that we treat the equations for Y and Z as the fast subsystem with the smallest param- 
eter for the derivatives, whereas in the case in which D << I the small parameter for the 
derivative appears in the equations for X and Y. The second fundamental difference from 
[4, I0], i.e., the equation for the magnetic field, is not separated out. For notation 
of the analyzed equations in standard form [15] under the condition of boundedness for the 
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derivatives of the slow variables, it is necessary to use the variable Z (i0), rather than 
= db/d$, as in [4, 6-10].* 

In analyzing Eqs. (7)-(11) by the method from the theory of singularly perturbed systems 
[13, 14] it is necessary, first of all, to exa_gine the degenerate system which is derived 
if in (7)-(11) it is formally assumed that M~e/B = 0 and if we assume that M~-eD ~ O: 

: F(X,  Y ,  b, Z) = O, (Q(X, Y ,  b, Z) =/= 0); (12)  

n - -  b ---- 0; ( 1 3 )  

MV"~p, d f /d~  = l~, ( 14 ) 

(?2/M ]/~]x)db/d~ = Z'~ -- .~nep}; ( 15 ) 

-n = 2M~-/[2M 2 -4- 72(t -- b'~) + M%~2)72]. (16)  

For the sake of simplicity of exposition, we have dropped the terms in (12)-(16) which 
�9 << contain the parameter e, slnce e Mv~ < i. According to (13), the frozen-in condition 

corresponds to transition from system (7)-(11) to the degenerate system (12)-(16), which 
yields all of the known results on the structure of magnetohydrodynamic shock waves [12]. 
Indeed, assuming that X = -(d~/d$)/Mv~e~ and taking into consideration that (u/c) 2 << i, 
it is easy to derive from (12)-(16) the equation for ~: 

d~/d~ 2 = ~ + I - - ~ ,  (17)  

which in  i t s  e x t e r n a l  form c o i n c i d e s  w i t h  t h e  c o r r e s p o n d i n g  e q u a t i o n  from [12] ,  d e r i v e d  
unde r  t h e  a s s u m p t i o n s  t h a t  p >> 1, u / c  < 1. However, in  (17) n * 2M2/[1 + 2M 2 - (1 + ~.)2] ,  
while in [12], owing to the oversimplification of the equations of ion motion, the density 
of the ions is expressed somewhat differently which, by the way, has no significant effect 
on the behavior of the function ~ = ~ ($). It follows from an analysis of Eq. (17) that 
with a change in ~ from +~ to -~ the sign of X changes from + to - [12]. 

The possibility of utilizing (12)-(16) in the place of (7)-(11) depends on the asymp- 
totic stability_of the connected system [13, 14] in the vicinity of the chosen root (Z = 
Z(X, b); Y = Y(X, b)). We will write the connected system 

(M]/"[/~)dY/d~ = F(X,  Y ,  b, Z)/QCX , Y ,  b, Z); (18)  

(M ]/"~/~)d~'d~ = b - -  (~ - -  ~), (19)  

in which the variables X and b are treated as parameters. Asymptotic stability occurs if 
the roots of the system F(X, Y, b, Z) = 0 and b - ~ = 0, corresponding to the equilibrium 
point (Z = Z(X, b), Y = Y(X, b)) of the connected system (18), (19) as ~ § exhibit the 
properties of a stable node or focus. The equilibrium point (Z, Y) serves as the center. 
In this connection, we will use the results from [16], where the condition of asymptotic 
stability for system (18), (19) is replaced by the condition of stability under the addi- 

*The behavior of fast variables affect the nature of the change in the slow variables [13, 
14] and according to the procedure for the solution of singularly perturbed equations [18], 
in the oscillatory course of change in the fast variables, these are replaced by certain 
averaged quantities. As the fast Variables it is natural to select such physical quantities 
which can be measured locally in the experiment. For the slow variables we should choose those 
which are measured by the averaged quantities. In this case, the results of the theory 
can be compared with the experiment. Moreover, if the point of equilibrium for the fast 
variables turns out to be unstable [19], then in the presence of limiting curves (only then 
it is possible to construct a solution) and of a possible sD!ution with these curves must 
system (7)-(10) remain representative [13, 14] and the variableschosen at the initial instant 
as the slow variables must, on reaching the limited curves, remain precisely such~ Accord- 
ing to [4, 7, 10], when ~ << 1 there exists a singular multiplicity Q = 0 which, as was 
demonstrated in [10], exhibits attraction properties. Consequently, selection as the slow 
variables (b, a) is improper and we should take a look at the variables (b, Z). As a 
result, the criterion of asymptotic stability, derived in [i0] to satisfy the conditions 
of quasineutrality (n e = ni) has been satisfied for the case in which Z > 0, i.e., when 
db/dg > 0. 
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tional assumption of the existence and positiveness of the mean of the derivative Lyapunov 
function (we will seek the solution as ~ +-~), where the mean is calculated along the 
integral curves of system (18), (19). In the system (7)-(10) we introduce the slow coordi- 
nates T = $~/Mv~e and carry out the substitution of the variables Y = Y0 + u, Z = Z0 + v, 

where (Y0; Z0) is the root of system (12), (13). As a result, with accuracy to terms on 
the order of I/D 2, e and 8 we obtain 

du/d'c = - - v b ( b  - -  u)  3 - -  e n 3 X  [1 - -  ((b - -  n) /b)  3 ] - -  

- -  (Yo q- u ) ( d n / d X ) / P 2 " t  - (t - -  d n / d b ) ( - - X / b  + v)(b - -  u ) ( M % / ?  2) - -  

- -  [~v@(u,  b, X); 

(20) 

dv/d~ = u -+ (]o -b u ) / p e b  - -  ( M 2 e / ~ , 2 ) ( X / b 2 ) ( v  - -  X / b ) ( b  - -  u); 

d X / d T  = (n  - -  b + u)/~t~; 

(21)  

(22 )  

db/dT = (M2e/?e) (v  - X / b ) ( b  - -  u) .  (23)  

Here ~(u, b, X) is some function whose specific form is unimportant, since it is not included 
in the criterion of stability, as will become evident later on. The Lyapunov function ~'0 
is introduced on the basis of the integral of motion from system (20)-(23) in approximation 
of E = ~ = i/~ 2 = 0: 

7/" 0 = (b /2)v  ~ - -  (b - -  2u ) /2 (b  - -  u) 2 + l / 2 b .  

We differentiate ~'0 on the strength of system (20)-(23): 

d~o/d'~ = ~ ( u ,  v,  b, X )  

(• v, b, X) = (I70 -b u)v/~ t~- - -  ~v@(u ,  b, X ) u / ( b  - -  u) ~ - -  

- -  (eM2/.~ ~) [ v ( X / b ) ( v  - -  X / b ) ( b  - -  u) + n 3 X ( b  3 - -  (b - -  u)3)(ul(b - -  u )3) /b3M 2 ~ (n 2b - -  t)(v - -  

- - Z / b ) ( b  - -  u ) (u / (b  - -  u) ~) - -  X Y o n 2 u / ( b  - -  u)~M2]). 

(24)  

Expression (24) has been derived in the first nonvanishing approximation, with accuracy 
to terms on the order of s, ~, and i/~ 2. According to [16], the solution of system (7)-(10) 
is close to the solution of system (12)-(16) for satisfaction of the inequality 

T 

L = ~ •  b , X ) d ~ > O  (T >> t). (25)  
0 

The i n t e g r a l  i n  (25 )  i s  c a l c u l a t e d  f o r  f i x e d  b and X a l o n g  t h e  s o l u t i o n  o f  s y s t e m  ( 2 0 ) ,  
( 2 1 ) .  I t  i s  p o s s i b l e  a p p r o x i m a t e l y  t o  f i n d  L on t h e  b a s i s  o f  t h e  f a c t  t h a t  t h e  r e s t i n g  
p o i n t  of  system ( l S ) ,  (19)  i s  the  c e n t e r  and, t h e r e f o r e ,  a s s u m n g  u b l  sin , v -I 1 cos  
( la l t  i s  t h e  a m p l i t u d e  f o r  t h e  change  in  t h e  f a s t  v a r i a b l e s ,  and I~al << 1 ) ,  so  t h a t  w i t h  a c -  
c u r a c y  t o  t h e  t e r m s  ~a 2 we h a v e  

L = - - ( M ~ e / ? ~ ) ( X / b ) ( a ~ 2 ) ( i  "b 8 M 4 ( b n  + t ) ]nb ) .  (26)  

C o n d i t i o n  (25)  g u a r a n t e e s  p r o x i m i t y  o f  t h e  s o l u t i o n  o f  s y s t e m  ( 7 ) - ( 1 0 )  t o  t h e  s o l u t i o n  o f  
t h e  d e g e n e r a t e  s y s t e m  ( 1 2 ) - ( 1 6 ) ,  when t h e  p a r a m e t e r s  Mv~ 'and  1 /~  a r e  o f  i d e n t i c a l  o r d e r  
o f  m a g n i t u d e  [ 1 6 ] .  A c c o r d i n g  t o  ( 2 5 ) ,  (25)  a p p r o x i m a t i o n  o f  t h e  c o n d i t i o n  o f  b e i n g  f r o z e n  
in  i s  v a l i d  f o r  X < 0 [ i t  f o l l o w s  f r o m  ( 1 2 ) - ( 1 5 )  t h a t  t h i s  i s  a " d e s c e n d i n g "  s egmen t  b a s  

+ - ~ ) .  When X > 0 t h i s  a p p r o x i m a t i o n ,  g e n e r a l l y  s p e a k i n g ,  may p r o v e  t o  be  i n v a l i d  and 
w i l l  r e q u i r e  a d d i t i o n a l  a n a l y s i s .  F i g u r e  1 shows t h e  p h a s e  p l a n e  (Z,  Y) ,  q u a l i t a t i v e l y  
mapp ing  t h e  p r i n c i p a l  s i n g u l a r i t i e s  o f  t h e  f a s t  s u b s y s t e m  ( 7 ) ,  ( 8 )  f o r  ~b 2 << 1. I n  i t s  
p h y s i c a l  s e n s e  t h e  m o t i o n  a l o n g  t h e  c u r v e  F(X, Y, b,  Z) = 0 ( l i n e  1) c o r r e s p o n d s  t o  t h e  
d r i f t i n g  n a t u r e  o f  t h e  y componen t  o f  t h e  e l e c t r o n  f l u x .  The c u r v e  Q(X, Y, b,  Z) = 0 d e f i n e s  
t h e  u n i q u e  s e t  in  wh ich  t h e  change  in  s i g n  o c c u r s  f o r  t h e  r i g h t - h a n d  s i d e  o f  t h e  e q u a t i o n  
f o r  Y, and h e r e  t h e  t h e r m a l  e l e c t r o n  f l u x  i s  compared  t o  t h e  h y d r o d y n a m i c  f l o w :  neVTe = 

n0u (VTe = ~ )  and t h e  maximum p o s s i b l e  s y n c h r o n i c i t y  in  p a r t i c l e  o s c i l l a t i o n  i s  a t t a i n e d .  

The u n i q u e  s e t  Q(X, Y, b ,  Z) = 0 p l a y s  t h e  same r o l e  in  t h e  s i n g u l a r l y  p e r t u r b e d  s y s t e m s  
a s  do t h e  s t a b l e  r o o t s  o f  t h e  d e g e n e r a t e  e q u a t i o n s  [ 5 ] .  The d a s h e d  l i n e  4 in  t h e  f i g u r e  
r e p r e s e n t s  t h e  t r a j e c t o r y  o f  t h e  s y s t e m ,  5 i s  t h e  l i n e  on which  t h e  c o n d i t i o n  f o r  t h e  " f r o z e n -  
i n "  c o n c e p t  h a s  been  s a t i s f i e d  (n = b ) ,  and l i n e  3 r e p r e s e n t s  n = 0. 
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In the degenerate system (12)-(16), since we can indicate no other algebraic roots 
exhibiting the properties of stability in the region X > 0 toward which the solution might 
strive, analysis at the phase plane of all singularities of system (7)-(10) is necessary. 
The motion of the integral curve of subsystem (7), (8) is determined by three regimes, de- 
pending on the relationship between M~'Eand !/p. Near the position of equilibrimn the motion 
is described in accordance with the theory developed in [16]. With increasing distance 
from the point (Y, Z) it is bounded from below by the unique set Q(X, Y, b, Z) = 0 (curve 2). 
If during the time for change in the slow variables (9), (i0), when the sign of X does not 
change, the integral curve reaches the unique set Q(X, Y, b, Z) = 0, and in this case, ac- 
cording to [5], the motion proceeds along curve 2, according to (8), where Y belongs to 
Q(X, Y, b, Z) = 0. The single valuedness of behavior will be disrupted at the point of 
intersection between curves 2 and i, which is the saddle. After its passage, the unique 
set Q(X, Y, b, Z) = 0 becomes unstable. Out of physical considerations, having chosen the 
direction of motion toward increasing Y (since as Y ~-~, n e ~ ~), we can prove that the 
trajectory executes an encirclement of the point (Y, Z) and once again reaches curve 2, 
i.e., the motion is repeated. From an analysis of the phase portrait of the system depicted 
in Fig. i, we can see that the limit trajectory of the fast subsystem (7), (8) is independent 
of the initial perturbations and thus exhibits stability, fndeed, if the initial value 
is removed from (Y, Z) over a considerable distance such as, for example, to the first quad- 
rant of the plane (Y, Z), then in the direction Y ~ +~ the motion is forbidden, since as 

~ el/3n (n = n - Y) in (7) the quantity F(X, Y, b, Z) is now of order s. The motion along 
0Y in this case is curtailed and can proceed only along the 0Z axis until the integral curve 
intersects curve I. The motion will then proceed in the direction Y ~-~ and the integral 
curve reaches curve 2. It is precisely the reaching by any trajectory of the unique set 
Q(X, Y, b, Z) = 0 and the motion along that trajectory to the point of intersection with 
F(X, Y, b, Z) = 0 that ensures stability of the limit trajectory. [The initial values must 
be positioned on the phase plane above curve 2, since below this curve Eqs. (1)-(6) are 
insufficient: here we must take into consideration the viscous terms of the pressure tensor.] 
The derived pattern of change in the fast variables is close to the relaxation oscillations 

N 

[17]. Here we find oscillations in the concentration of electrons n = n - Y and in the 
y-component of electron velocity: Vey ~ Z. It is not difficult to estimate the period 
of these oscillations. The limit trajectory on the (Y, Z) plane consists of the segment 
DB of the unique set Q(X, Y, b, Z) = 0 along which it moves through the characteristic time 
TI, and the curve BCD, encompassing the point (Y, Z), starting from the point of intersec- 
tion for curves 1 and 2 and reaching the unique set Q(X, Y, b, Z) = 0 after encircling point 
(Y, Z). The system passes through this curve within the characteristic time T 2. Using 
(8) and taking into consideration that ~ = x - ut, let us estimate T I and T 2. In motion 
over segment BCD of the limit trajectory we can assume that ~2 ~ I, and therefore from 
(18) and (19) in the a = 0 approximation we have 

dY*/dZ* = --bZ*(b - -  Y*)3IY* (Y* = b -  ~- t -  ~ ,  Z* Z--~ XI~. ( 2 7 )  

Integrating (27) and assuming for the sake of simplicity that b -~ I, we obtain 

Z *~ "+" ( Y * / ( t  - -  Y*))" = A ~ (A = r  (28) 
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In view of the fact that ~ < n, from (28) it is easy to find the limitation imposed on IAI: 
IAI < i. Hence it follows that on motion over the limit trajectory on the BCD segment (see 
Fig. i) Y* < 1/2 and Z* < i, i.e., n e e B/2, while the maximum oscillation amplitude of 
the y-component of the electron velocity ]Vey ] ~ u. In view of the foregoing we have T2 ~ 

i/mBe. In motion_ over the segment DB (fi = I/4~-m I, where ~ < i) fi m b, so that consequent- 
ly T I ~ VTe/U~Be. Since ~ i, then T I ~ T=, and the period of the resulting oscillations 

is therefore T = Tl + T2 = i/mBe- 

Thus, when ~ m 1 we are confronted with the "bunching" of the electrons at the Larmor 
radius, with a buildup of relation-type cyclotron oscillations, since motion along the unique 
set in this case may be regarded as a discontinuity in the y-component of the electron velo- 
city, given a constant concentration of these electrons. It should be stressed that it 
is the electron density and the y-component of the electron velocity that execute regular 
oscillations at the front of the wave. More complex is tile intermediate regime in which, 
given a change in the slow variables (9), (I0), the sign of X changes until the integral 
curve of the fast subsystem (7), (8) is capable of reaching the unique set Q(X, Y,_b,_Z) = 
0. In this case, it executes motion in the region between the equilibrium point (Y, Z) 
and the limit trajectory, without ever reachingthe latter. Realization of such motion 
occurs, apparently, when between Mv~-'e and I/D the relationship MvaD ~ i is satisfied. 

Since the fast variable (Y, Z) change in the bounded region, then as their change takes 
place near the equilibrium point (Y, Z) or as they reach the limit trajectory, in the equa- 
tions for (X, b) we can carry out the averaging procedure. In the first case, the averaging 
is accomplished in complete agreement with [16]. In the second case, we are confronted 
with the singularity that is associated with the fact that on reaching the set Q(X, Y, b, 
Z) = 0 the derivatives of the fast variables have not been determined, so that there is 
no smoothness in the right-hand sides in the equations for (X, b). However, even here the 
averaging procedure is valid [18]. After averaging of the equations for the slow variables 

(9), (i0), we obtain 

M ]f-e~d (X)/d~ = <Y ); (29) 

( ~ M  V'J~)d (b >/d~ = <Zn > - -  <ZY > -- ~ <Xn >, ( 3 0 )  

where <A> denotes the average value of A, and <A> depends on the regime dependent on M ev~-- 
and i/~ that is established in the fast subsystem (7), (8). Since <Y>, <Zn>, <ZY>, and 
<Xn> are functions of <X> and <b>, system (29), (30) describes the change in the new slow 
variables (<X>, <b>) which are close to (X, b) in the first case [16, 18]. In the second 
case, the solution of system (29), (30) can, however, differ from the solution for system 
(12)-(16) both in terms of the scale of change in the slow variables, and in the functional 

relationship. 

Thus, for purposes of investigating the regions of applicability for such character- 
istic properties of the plasma as the "frozen-in" concept and quasineutrality, it is essen- 
tial that we resort to the theory of singular perturbations [13, !4]. The unique feature 
of the hydrodynamic equations of a plasma as an object of the theory of singularly perturbed 
systems, where the position of the equilibrium for the corresponding connected system in 
zeroth approximation of the small parameters turns out, as a rule, to be the center, and 
therefore requires a more careful analysis of its stability, is based on construction of 
the Lyapunov functions [16]. The oscillatory nature of the changes in the fast variables 
demands the procedure of averaging in solving the system of equations for the slow variables 
[18]. With a stable motion of the fast variables about the position of equilibrium the 
average values of the slow variables will be no different from those which are derived in 
replacement of the connected system by the degenerate system. As was demonstrated by the 
analysis conducted in [I0, 5] and in the present study, in the case of instability the fast 
variables change in the bounded region of the phase space and even in the simplest model 
of a plasma with "cold" electrons (VTe < u) and where the effect of the finite Larmor radius 

is neglected it is possible to point to the limit trajectory asymptotically attained by 
the integral curve of the fast subsystem. The existence of a limit trajectory is ensured, 
first of all, by the unique set Q = 0 exhibiting attraction properties [5]. The presence 
of a unique set not only guarantees stability of the limit trajectory for the fast variables, 
but is determining in the selection of the slow variables which must necessarily be repre- 
sented in standard form [15] in order for the averaging procedure to make any sense when 

Q = O. 
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Analysis of the fast variables in the equations of two-fluid magnetohydrodynamics by 
the method from the theory of singularly perturbed systems makes it possible asymptotically 
to describe with precision the nonlinear electrostatic oscillations which exhibit a relaxa- 
tional nature [17, 19] owing to the existence of the unique set Q = 0. The change in the 
electron concentration and in the y-component of the electron velocity acquires the nature 
of regular relaxation-type cyclotron oscillations with a rather substantial change in elec- 
tron concentration so that it becomes possible, therefore, to speak of the "bunching" of 
both the final phase of the oscillatory process and limit values for electron concentrations 
determined by the limiting curves Q = 0 and n e = 0. 

In conclusion, the authors wish to express their gratitude to A. N. Tikhonov and V. D~ 
Rusanov for their interest in this study and for their useful discussions. 
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